Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

5,6-Dimethyl-1,2,4-triazin-3-amine

Man-Hua Wu, ${ }^{\text {a }}$ Qi-Ming Qiu, ${ }^{\text {a }}$ Sen Gao, ${ }^{\text {a }}$ Qiong-Hua Jin ${ }^{\text {a }}$ and Cun-Lin Zhang ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Chemistry, Capital Normal University, Beijing 100048, People's Republic of China, and ${ }^{\mathbf{b}}$ Key Laboratory of Terahertz Optoelectronic, Ministry of Education, Department of Physics, Capital Normal University, Beijing 100048, People's Republic of China
Correspondence e-mail: jinqh204@163.com
Received 9 October 2011; accepted 1 December 2011
Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$; R factor $=0.048 ; w R$ factor $=0.157$; data-to-parameter ratio $=10.6$.

In the crystal structure of the title compound, $\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{~N}_{4}$, adjacent molecules are connected through $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds, resulting in a zigzag chain along [100]. The amino groups and heterocyclic N atoms are involved in further $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds, forming $R_{2}^{2}(8)$ motifs.

Related literature

For the biological and medical applications of triazine, see: Anderson et al.(2003); Gavai et al. (2009); Hunt et al. (2004). For the structures of complexes containing triazine, see: Drew et al. (2001); Li et al. (2009); Machura et al. (2008). For the structures of complexes containing the title compound, see: Jiang et al. (2011); Self et al. (1991); Wu et al. (2011). For the structures of compounds containing $R_{2}^{2}(8)$-type hydrogen bonds, see: Etter (1990); Glidewell et al. (2003).

Experimental

Crystal data

$\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{~N}_{4}$
$M_{r}=124.14$
Orthorhombic, Pnma
$a=7.4877$ (8) \AA
$b=6.7530$ (7) Å
$c=12.6615(13) \AA$
$V=640.22(12) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
$0.50 \times 0.39 \times 0.38 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2007)
$T_{\text {min }}=0.960, T_{\text {max }}=0.969$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.048 \quad 58$ parameters
$w R\left(F^{2}\right)=0.157 \quad \mathrm{H}$-atom parameters constrained
$S=1.11$
$\Delta \rho_{\text {max }}=0.26 \mathrm{e} \AA_{\AA^{-3}}$
614 reflections

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 4-\mathrm{H} 4 A \cdots \mathrm{~N}^{\mathrm{i}}$	0.86	2.19	$3.045(4)$	179
$\mathrm{~N} 4-\mathrm{H} 4 B \cdots \mathrm{~N} 2^{\mathrm{ii}}$	0.86	2.09	$2.947(4)$	176

Symmetry codes: (i) $x+\frac{1}{2}, y,-z+\frac{3}{2}$; (ii) $x-\frac{1}{2}, y,-z+\frac{3}{2}$.
Data collection: SMART (Bruker, 2007); cell refinement: SAINTPlus (Bruker, 2007); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was supported by the National Natural Science Foundation of China (No. 21171119), the CAIQ Basic Research Program (No. 2010 J K022), the National Keystone Basic Research Program (973 Program) under grant Nos. 2007CB310408 and 2006CB302901, the Funding Project for Academic Human Resources Development in Institutions of Higher Learning under the Jurisdiction of Beijing Municipality and the State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RN2097).

References

Anderson, R. F., Shinde, S. S., Hay, M. P., Gamage, S. A. \& Denny, W. A. (2003). J. Am. Chem. Soc. 125, 748-756.

Bruker (2007). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Wisconsin, USA.
Drew, M. G. B., Guillaneux, D., Hudson, M. J., Iveson, P. B., Russell, M. L. \& Madic, C. (2001). Inorg. Chem. Commun. 4, 12-15.
Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.
Gavai, A. V., Fink, B. E., Fairfax, D. J., Martin, G. S. \& Rossiter, L. M. (2009). J. Med. Chem. 52, 6527-6530.
Glidewell, C., Low, J. N., Melguizo, M. \& Quesada, A. (2003). Acta Cryst. C59, o9-o13.
Hunt, J. T., Mitt, T., Borzilleri, R., Brown, J. G. \& Fargnoli, J. (2004). J. Med. Chem. 47, 4054-4059.
Jiang, Y.-H., Cui, L.-N., Huang, X., Jin, Q.-H. \& Zhang, C.-L. (2011). Acta Cryst. E67, m1526-m1527.
Li, L. X., Turnbull, M. M., Ackers, J., Chen, J. P., Lin, H. Y., Pan, B. F., Wang, H. \& Foxman, B. M. (2009). Inorg. Chim. Acta, 362, 3845-3852.
Machura, B., Switlicka, A., Kruszynski, R., Mrozinski, J., Klak, J. \& Kusz, J. (2008). Polyhedron, 27, 2959-2967.

Self, M. F., Pennington, W. T. \& Robinson, G. H. (1991). J. Coord. Chem. 24, 69-76.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Wu, M. H., Wang, R., Li, Z. F., Xiao, Y. L., Jin, Q. H. \& Zhang, C. L. (2011). Z. Kristallogr. New Cryst. Struct. 226, 555-556.

supplementary materials

5,6-Dimethyl-1,2,4-triazin-3-amine

M.-H. Wu, Q.-M. Qiu, S. Gao, Q.-H. Jin and C.-L. Zhang

Comment

The heterocyclic nitrogen compounds containing 1,2,4-triazine moieties have drawn much attention in recent years, owing to their interesting biological and medicinal properties (Anderson et al., 2003; Gavai et al., 2009; Hunt et al.,2004). They usually act as efficient ligands in supramolecular compounds (Drew et al., 2001; Li et al., 2009; Machura et al., 2008). The title compound (I) has been used as a multidentate ligand to form poly-nuclear complexes (Self et al., 1991). In (I), hydrogen bonds are formed between the NH groups of amino group and the N atoms.

We are interested in synthesizing new transition metal complexes containing (I) (Jiang et al., 2011; Wu et al., 2011). The title compound was unexpectedly obtained in the course of synthesizing $\mathrm{Cu}(\mathrm{I})$ complexes.

In the title compound, adjacent molecules are connected by intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds to form a zigzag structure (Fig. 2). In the crystal structure, the amino groups and heterocyclic N atoms are involved in hydrogen bonds,forming $R_{2}{ }^{2}(8)$ type hydrogen bonds (Etter, 1990; Glidewell et al., 2003).

Experimental

A mixture of CuCN and ADMT (ADMT=3-amino-5,6-dimethyl- 1,2,4-triazine) in molar ratio of 1:1 in the mixed solution of $\mathrm{CH}_{3} \mathrm{CN}(7 \mathrm{ml}) / \mathrm{CH}_{3} \mathrm{OH}(3 \mathrm{ml})$ was stirred for 3 h ,then filtered. Pale yellow crystals were obtained from the filtrate after standing at room temperature for several days.

Refinement

The final refinements were performed with isotropic thermal parameters. All hydrogen atoms were located in the calculated sites and included in the final refinement in the riding model approximation with displacement parameters derived from the parent atoms to which they were bonded. The ratios of H atom $U_{\text {iso }}$ to C atom $U_{\text {eq }}$ are 1.5 . The ratios of H atom $U_{\text {iso }}$ to N atom $U_{\text {eq }}$ are 1.2.

Figures

Fig. 1. Molecular structure of (I) with displacement ellipsoids drawn at the 50% probability level.

supplementary materials

Fig. 2. Crystal packing for (I) with hydrogen bonds shown as dashed lines.

5,6-Dimethyl-1,2,4-triazin-3-amine

Crystal data

$\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{~N}_{4}$
$M_{r}=124.14$
Orthorhombic, Pnma
$a=7.4877$ (8) \AA
$b=6.7530$ (7) \AA
$c=12.6615(13) \AA$
$V=640.22(12) \AA^{3}$
$Z=4$
$F(000)=264$

Data collection

Bruker SMART CCD area-detector diffractometer
Radiation source: fine-focus sealed tube graphite
phi and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
$T_{\text {min }}=0.960, T_{\text {max }}=0.969$
2997 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.048$
$w R\left(F^{2}\right)=0.157$
$S=1.11$
614 reflections
58 parameters
$D_{\mathrm{x}}=1.278 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1029 reflections
$\theta=2.7-28.0^{\circ}$
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Block, yellow
$0.50 \times 0.39 \times 0.38 \mathrm{~mm}$

614 independent reflections
421 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.034$
$\theta_{\text {max }}=25.0^{\circ}, \theta_{\text {min }}=3.2^{\circ}$
$h=-7 \rightarrow 8$
$k=-8 \rightarrow 7$
$l=-14 \rightarrow 15$

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0627 P)^{2}+0.3625 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=0.26$ e \AA^{-3}

0 restraints

$$
\Delta \rho_{\min }=-0.16 \mathrm{e} \AA^{-3}
$$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$	Occ. (<1)
N1	$1.0561(4)$	0.2500	$0.5062(2)$	$0.0514(9)$	
N2	$1.0506(4)$	0.2500	$0.6123(2)$	$0.0499(8)$	
N3	$0.7314(4)$	0.2500	$0.60746(19)$	$0.0466(8)$	
N4	$0.8858(4)$	0.2500	$0.7657(2)$	$0.0609(10)$	
H4A	0.9838	0.2500	0.8011	0.073^{*}	
H4B	0.7850	0.2500	0.7982	0.073^{*}	
C1	$0.8903(4)$	0.2500	$0.6589(2)$	$0.0447(9)$	
C2	$0.7407(5)$	0.2500	$0.5030(2)$	$0.0469(9)$	
C3	$0.9072(5)$	0.2500	$0.4511(2)$	$0.0477(9)$	
C4	$0.5682(5)$	0.2500	$0.4422(3)$	$0.0678(12)$	
H4C	0.5720	0.3512	0.3890	0.102^{*}	0.50
H4D	0.4708	0.2755	0.4896	0.102^{*}	0.50
H4E	0.5516	0.1233	0.4093	0.102^{*}	0.50
C5	$0.9233(5)$	0.2500	$0.3332(2)$	$0.0624(11)$	
H5A	0.8506	0.1461	0.3044	0.094^{*}	0.50
H5B	1.0456	0.2286	0.3137	0.094^{*}	0.50
H5C	0.8839	0.3753	0.3060	0.094^{*}	0.50

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N 1	$0.0485(19)$	$0.063(2)$	$0.0425(16)$	0.000	$0.0087(13)$	0.000
N 2	$0.0412(17)$	$0.069(2)$	$0.0395(16)$	0.000	$0.0016(12)$	0.000
N 3	$0.0431(16)$	$0.062(2)$	$0.0346(15)$	0.000	$-0.0012(11)$	0.000
N 4	$0.0382(16)$	$0.105(3)$	$0.0391(16)$	0.000	$-0.0064(12)$	0.000
C 1	$0.0417(19)$	$0.057(2)$	$0.0350(17)$	0.000	$-0.0008(13)$	0.000
C 2	$0.054(2)$	$0.050(2)$	$0.0374(19)$	0.000	$-0.0014(14)$	0.000
C3	$0.055(2)$	$0.049(2)$	$0.0397(19)$	0.000	$0.0031(16)$	0.000
C4	$0.060(2)$	$0.097(3)$	$0.047(2)$	0.000	$-0.0118(17)$	0.000
C5	$0.075(3)$	$0.074(3)$	$0.0376(19)$	0.000	$0.0075(18)$	0.000

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

N1-C3	1.315 (4)	C2-C4	1.503 (5)
N1-N2	1.344 (4)	C3-C5	1.498 (4)
N2-C1	1.338 (4)	$\mathrm{C} 4-\mathrm{H} 4 \mathrm{C}$	0.9600
N3-C2	1.325 (4)	C4-H4D	0.9600
N3-C1	1.356 (4)	C4-H4E	0.9600
N4-C1	1.353 (4)	C5-H5A	0.9600
N4-H4A	0.8600	C5-H5B	0.9600
N4-H4B	0.8600	C5-H5C	0.9600
C2-C3	1.409 (5)		
C3-N1-N2	120.2 (3)	C2-C3-C5	122.4 (3)
C1-N2-N1	117.9 (3)	C2-C4-H4C	109.5
C2-N3-C1	115.7 (3)	C2-C4-H4D	109.5
C1-N4-H4A	120.0	H4C-C4-H4D	109.5
C1-N4-H4B	120.0	C2-C4-H4E	109.5
H4A-N4-H4B	120.0	H4C-C4-H4E	109.5
N2-C1-N4	117.6 (3)	H4D-C4-H4E	109.5
N2-C1-N3	125.2 (3)	C3-C5-H5A	109.5
N4-C1-N3	117.3 (3)	C3-C5-H5B	109.5
N3-C2-C3	120.8 (3)	H5A-C5-H5B	109.5
N3-C2-C4	117.7 (3)	C3-C5-H5C	109.5
C3-C2-C4	121.5 (3)	H5A-C5- H 5 C	109.5
N1-C3-C2	120.2 (3)	H5B-C5-H5C	109.5
N1-C3-C5	117.4 (3)		
C3-N1-N2-C1	0.0	N2-N1-C3-C2	0.0
N1-N2-C1-N4	180.0	N2-N1-C3-C5	180.0
N1-N2-C1-N3	0.000 (1)	N3-C2-C3-N1	0.0
$\mathrm{C} 2-\mathrm{N} 3-\mathrm{C} 1-\mathrm{N} 2$	0.000 (1)	C4-C2-C3-N1	180.0
$\mathrm{C} 2-\mathrm{N} 3-\mathrm{C} 1-\mathrm{N} 4$	180.0	N3-C2-C3-C5	180.0
C1-N3-C2-C3	0.0	C4-C2-C3-C5	0.0
C1-N3-C2-C4	180.0		

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 4 — \mathrm{H} 4 \mathrm{~A} \cdots \mathrm{~N} 3^{\mathrm{i}}$	0.86	2.19	$3.045(4)$	179.
$\mathrm{~N} 4 — \mathrm{H} 4 \mathrm{~B} \cdots \mathrm{~N} 2^{\mathrm{ii}}$	0.86	2.09	$2.947(4)$	176.

Symmetry codes: (i) $x+1 / 2, y,-z+3 / 2$; (ii) $x-1 / 2, y,-z+3 / 2$.

Fig. 1

supplementary materials

Fig. 2

